Reiterative Robust Adaptive Thresholding for Nonhomogeneity Detection in Non-Gaussian Noise
نویسندگان
چکیده
منابع مشابه
Reiterative Robust Adaptive Thresholding for Nonhomogeneity Detection in Non-Gaussian Noise
A robust and data-dependent adaptive thresholding algorithm for nonhomogeneity detection in non-Gaussian interference is addressed. The algorithm is to be used as a preprocessing technique to select a set of homogeneous data from a bulk of nonhomogeneous compound-Gaussian secondary data employed for adaptive radar. An iterative version of the algorithm is also suggested in situations of multipl...
متن کاملWavelet Thresholding for Non Necessarily Gaussian Noise: Idealism
For various types of noise (exponential, normal mixture, compactly supported, ...) wavelet tresholding methods are studied. Problems linked to the existence of optimal thresholds are tackled, and minimaxity properties of the methods also analyzed. A coefficient dependent method for choosing thresholds is also briefly presented. 1. Introduction. A common underlying assumption in non-parametric c...
متن کاملWavelet Thresholding for Non Necessarily Gaussian Noise: Functionality
For signals belonging to balls in smoothness classes and noise with enough moments, the asymptotic behavior of the minimax quadratic risk among soft–threshold estimates is investigated. In turn, these results combined with a median filtering method lead to asymptotics for denoising heavy tails via wavelet thresholding. Some further comparisons of wavelet thresholding and of kernel estimators ar...
متن کاملWavelet thresholding for some classes of non-Gaussian noise
Wavelet shrinkage and thresholding methods constitute a powerful way to carry out signal denoising, especially when the underlying signal has a sparse wavelet representation. They are computationally fast, and automatically adapt to the smoothness of the signal to be estimated. Nearly minimax properties for simple threshold estimators over a large class of function spaces and for a wide range o...
متن کاملRobust Approach for Blind Source Separation in Non-gaussian Noise
In this contribution, we address the issue of Blind Source Separation (BSS) in non-Gaussian noise. We propose a twostep approach by combining the fractional lower order statistics (FLOS) for the mixing matrix estimation and minimum entropy criterion for noise-free source components estimation with the gradient-based BSS algorithms in an elegant way. First, we extend the existing gradient algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EURASIP Journal on Advances in Signal Processing
سال: 2008
ISSN: 1687-6180
DOI: 10.1155/2008/786136